skip to main content


Search for: All records

Creators/Authors contains: "Cai, Tianxi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The ability to predict individualized treatment effects (ITEs) based on a given patient's profile is essential for personalized medicine. We propose a hypothesis testing approach to choosing between two potential treatments for a given individual in the framework of high-dimensional linear models. The methodological novelty lies in the construction of a debiased estimator of the ITE and establishment of its asymptotic normality uniformly for an arbitrary future high-dimensional observation, while the existing methods can only handle certain specific forms of observations. We introduce a testing procedure with the type I error controlled and establish its asymptotic power. The proposed method can be extended to making inference for general linear contrasts, including both the average treatment effect and outcome prediction. We introduce the optimality framework for hypothesis testing from both the minimaxity and adaptivity perspectives and establish the optimality of the proposed procedure. An extension to high-dimensional approximate linear models is also considered. The finite sample performance of the procedure is demonstrated in simulation studies and further illustrated through an analysis of electronic health records data from patients with rheumatoid arthritis.

     
    more » « less
  2. Abstract

    We consider estimating average treatment effects (ATE) of a binary treatment in observational data when data‐driven variable selection is needed to select relevant covariates from a moderately large number of available covariates . To leverage covariates among predictive of the outcome for efficiency gain while using regularization to fit a parametric propensity score (PS) model, we consider a dimension reduction of based on fitting both working PS and outcome models using adaptive LASSO. A novel PS estimator, the Double‐index Propensity Score (DiPS), is proposed, in which the treatment status is smoothed over the linear predictors for from both the initial working models. The ATE is estimated by using the DiPS in a normalized inverse probability weighting estimator, which is found to maintain double robustness and also local semiparametric efficiency with a fixed number of covariatesp. Under misspecification of working models, the smoothing step leads to gains in efficiency and robustness over traditional doubly robust estimators. These results are extended to the case wherepdiverges with sample size and working models are sparse. Simulations show the benefits of the approach in finite samples. We illustrate the method by estimating the ATE of statins on colorectal cancer risk in an electronic medical record study and the effect of smoking on C‐reactive protein in the Framingham Offspring Study.

     
    more » « less
  3. Summary

    Integrating genomic information with traditional clinical risk factors to improve the prediction of disease outcomes could profoundly change the practice of medicine. However, the large number of potential markers and possible complexity of the relationship between markers and disease make it difficult to construct accurate risk prediction models. Standard approaches for identifying important markers often rely on marginal associations or linearity assumptions and may not capture non-linear or interactive effects. In recent years, much work has been done to group genes into pathways and networks. Integrating such biological knowledge into statistical learning could potentially improve model interpretability and reliability. One effective approach is to employ a kernel machine (KM) framework, which can capture nonlinear effects if nonlinear kernels are used (Scholkopf and Smola, 2002; Liu et al., 2007, 2008). For survival outcomes, KM regression modeling and testing procedures have been derived under a proportional hazards (PH) assumption (Li and Luan, 2003; Cai, Tonini, and Lin, 2011). In this article, we derive testing and prediction methods for KM regression under the accelerated failure time (AFT) model, a useful alternative to the PH model. We approximate the null distribution of our test statistic using resampling procedures. When multiple kernels are of potential interest, it may be unclear in advance which kernel to use for testing and estimation. We propose a robust Omnibus Test that combines information across kernels, and an approach for selecting the best kernel for estimation. The methods are illustrated with an application in breast cancer.

     
    more » « less